国内激情自拍-国内激情视频-国内黄色一级精品-国内国外精品一区二区-国内国内在线精品视频-国内高清自拍

直流電源廠家的工程師如何理解電容、電感產生的相位差?

對于正弦信號,流過一個元器件的電流和其兩端的電壓,它們的相位不一定是相同的。這種相位差是如何產生的呢?這種知識對直流電源廠家的工程師非常重要,因為不僅放大器、自激振蕩器的反饋信號要考慮相位,而且在構造一個電路時也需要充分了解、利用或避免這種相位差。下面探討這個問題。 


首先,直流電源廠家的工程師要了解一下一些元件是如何構建出來的;其次,直流電源廠家的工程師要了解電路元器件的基本工作原理;第三,據此找到理解相位差產生的原因;第四,利用元件的相位差特性構造一些基本電路。 


一、電阻、電感、電容的誕生過程 


直流電源廠家的工程師經過長期的觀察、試驗,弄清楚了一些道理,也經常出現了一些預料之外的偶然發現,如倫琴發現X射線、居里夫人發現鐳的輻射現象,這些偶然的發現居然成了偉大的科學成就。電子學領域也是如此。 


直流電源廠家的工程師讓電流流過導線的時候,偶然發現了導線發熱、電磁感應現象,進而發明了電阻、電感。直流電源廠家的工程師還從摩擦起電現象得到靈感,發明了電容。發現整流現象而創造出二極管也是偶然。 


二、元器件的基本工作原理


電阻——電能→熱能 

電感——電能→磁場能,&磁場能→電能 

電容——電勢能→電場能,&電場能→電流 


由此可見,電阻、電感、電容就是能源轉換的元件。電阻、電感實現不同種類能量間的轉換,電容則實現電勢能與電場能的轉換。


1、電阻 

電阻的原理是:電勢能→電流→熱能。 


電源正負兩端貯藏有電勢能(正負電荷),當電勢加在電阻兩端,電荷在電勢差作用下流動——形成了電流,其流動速度遠比無電勢差時的亂序自由運動快,在電阻或導體內碰撞產生的熱量也就更多。 


正電荷從電勢高的一端進入電阻,負電荷從電勢低的一端進入電阻,二者在電阻內部進行中和作用。中和作用使得正電荷數量在電阻內部呈現從高電勢端到低電勢端的梯度分布,負電荷數量在電阻內部呈現從低電勢端到高電勢端的梯度分布,從而在電阻兩端產生了電勢差,這就是電阻的電壓降。同樣電流下,電阻對中和作用的阻力越大,其兩端電壓降也越大。 


因此,用R=V/I來衡量線性電阻(電壓降與通過的電流成正比)的阻力大小。 


對交流信號則表達為R=v(t)/i(t)。 

注意,也有非線性電阻的概念,其非線性有電壓影響型、電流影響型等。


2、電感 


電感的原理:電感——電勢能→電流→磁場能,&磁場能→電勢能(若有負載,則→電流)。 

當電源電勢加在電感線圈兩端,電荷在電勢差作用下流動——形成了電流,電流轉變磁場,這稱為“充磁”過程。若被充磁電感線圈兩端的電源電勢差撤銷,且電感線圈外接有負載,則磁場能在衰減的過程中轉換為電能(如負載為電容,則為電場能;若負載為電阻,則為電流),這稱為“去磁”過程。 


衡量電感線圈充磁多少的單位是磁鏈——Ψ。電流越大,電感線圈被沖磁鏈就越多,即磁鏈與電流成正比,即Ψ=L*I。對一個指定電感線圈,L是常量。 

因此,用L=Ψ/I表達電感線圈的電磁轉換能力,稱L為電感量。 電感量的微分表達式為:L=dΨ(t)/di(t)。


根據電磁感應原理,磁鏈變化產生感應電壓,磁鏈變化越大則感應電壓越高,即v(t)=d dΨ(t)/dt。 

綜合上面兩公式得到:v(t)=L*di(t)/dt,即電感的感應電壓與電流的變化率(對時間的導數)成正比,電流變化越快則感應電壓越高。 


3、電容 


電容的原理:電勢能→電流→電場能,電場能→電流。 

當電源電勢加在電容的兩個金屬極板上,正負電荷在電勢差作用下分別向電容兩個極板聚集而形成電場,這稱為“充電”過程。若被充電電容兩端的電源電勢差撤銷,且電容外接有負載,則電容兩端的電荷在其電勢差下向外流走,這稱為“放電”過程。電荷在向電容聚集和從電容兩個極板向外流走的過程中,電荷的流動就形成了電流。 


要特別注意,電容上的電流并不是電荷真的流過電容兩個極板間的絕緣介質,而只是充電過程中電荷從外部向電容兩個極板聚集形成的流動,以及放電過程中電荷從電容兩個極板向外流走而形成的流動。也就是說,電容的電流其實是外部電流,而非內部電流,這與電阻、電感都不一樣。 


衡量電容充電多少的單位是電荷數——Q。電容極板間電勢差越大,說明電容極板被沖電荷越多,即電荷數與電勢差(電壓)成正比,即Q=C*V。對指定電容,C是常量。 


因此,用C=Q/V表達電容極板貯存電荷的能力,稱C為電容量。 

電容量的微分表達式為:C=dQ(t)/dv(t)。 


因為電流等于單位時間內電荷數的變化量,即i(t)=dQ(t)/dt, 


綜合上面兩個公式得到:i(t)=C*dv(t)/dt,即電容電流與其上電壓的變化率(對時間的導數)成正比,電壓變化越快則電流越大。


小結: v(t)=L*di(t)/dt,表明電流變化形成了電感的感應電壓(電流不變則沒有感應電壓形成)。 i(t)=C*dv(t)/dt表明電壓變化形成了電容的外部電流(實際是電荷量變化。電壓不變則沒有電容的外部電流形成)。 


三、元件對信號相位的改變 


首先要提醒直流電源廠家的工程師,相位的概念是針對正弦信號而言的,直流信號、非周期變化信號等都沒有相位的概念。 


1、電阻上的電壓電流同相位 


因為電阻上電壓v(t)=R*i(t),若i(t)=sin(ωt+θ),則v(t)=R* sin(ωt+θ)。 所以,電阻上電壓與電流同相位。 


2、電感上的電流落后電壓90°相位 


因為電感上感應電壓v(t)=L*di(t)/dt,若i(t)=sin(ωt+θ),則v(t)=L*cos(ωt+θ)。 


所以,電感上電流落后感應電壓90°相位,或者說感應電壓超前電流90°相位。 直觀理解:設想一個電感與電阻串聯充磁。從充磁過程看,充磁電流的變化引起磁鏈的變化,而磁鏈的變化又產生感應電動勢和感應電流。根據楞次定律,感應電流方向與充磁電流相反,延緩了充磁電流的變化,使得充磁電流相位落后于感應電壓。 


3、電容上的電流超前電壓90°相位 


因為電容上電流i(t)=C*dv(t)/dt,若v(t)=sin(ωt+θ),則i(t)=L*cos(ωt+θ)。 


所以,電容上電流超前電壓90°相位,或者說電壓落后電流90°相位。 


直觀理解:設想一個電容與電阻串聯充電。從充電過程看,總是先有流動電荷(即電流)的積累才有電容上的電壓變化,即電流總是超前于電壓,或者說電壓總是落后與電流。下面的積分方程能體現這種直觀性: 


v(t)=(1/C)*∫i(t)*dt=(1/C)*∫dQ(t),即電荷變化的積累形成了電壓,故dQ(t)相位超前v(t);而電荷積累的過程就是電流同步變化的過程,即i(t)與dQ(t)同相。因此i(t)相位超前于v(t)。 


四、元件相位差的應用——RC文氏橋、LC諧振過程的理解 


無論RC文氏橋,還是LC的串聯諧振、并聯諧振,都是由電容或/和電感容元件的電壓、電流相位差引起的,就像機械共振的節拍一樣。 


當兩個頻率相同、相位相位的正弦波疊加時,疊加波的幅度達到最大值,這就是共振現象,在電路里稱為諧振。 


兩個頻率相同、相位相反的正弦波疊加,疊加波的幅度會降到最低,甚至為零。這就是減小或吸收振動的原理,如降噪設備。 


當一個系統中有多個頻率信號混合時,如果有兩個同頻信號產生了共振,那么這個系統中其它振動頻率的能量就被這兩個同頻、同相的信號所吸收,從而起到了對其它頻率的過濾作用。這就是電路中諧振過濾的原理。 


諧振需要同時滿足頻率相同和相位相同兩個條件。電路如何通過幅度-頻率特性選擇頻率的方法以前在RC文氏橋中講過,LC串并聯的思路與RC相同,這里不再贅述。下面我們來看看電路諧振中相位補償的粗略估計(更精確的相位偏移則要計算) 


1、RC文氏橋的諧振(圖1) 


若沒有C2,正弦信號Uo的電流由C1→R1→R2,通過R2上壓降形成Uf輸出電壓。由于支路電流被電容C1移相超前Uo 90°,這超前相位的電流流過R2(電阻不產生相移!),使得輸出電壓Uf電壓超前于Uo 90°。 


在R2上并聯C2,C2從R2取得電壓,由于電容對電壓的滯后作用,使得R2上電壓也被強制滯后。(但不一定有90°,因為還有C1→R1→C2電流對C2上電壓即Uf的影響,但在RC特征頻率上,并聯C2后Uf輸出相位與Uo相同。) 


小結:并聯電容使得電壓信號相位滯后,稱為電壓相位的并聯補償。    

 直流電源廠家的工程師如何理解電容、電感產生的相位差?

2、LC并聯諧振(圖2) 


若沒有電容C,正弦信號u通過L感應到次級輸出Uf,Uf電壓超前于u 90°; 在L初級并聯電容C,由于電容對電壓的滯后作用,使得L上電壓也被強制滯后90°。因此,并聯C后Uf輸出相位與u相同。 


3、LC串聯諧振(圖3) 

  

對于輸入正弦信號u,電容C使得串聯回路中負載R上的電流相位超前于u 90°,電感L則使得同一串聯回路中的電流相位再滯后90°二者相位偏移剛好抵消。因此,輸出Uf與輸入u同相。 


總結:(注意,相位影響不一定都是90°,與其它部分相關,具體則要計算) 串聯電容使得串聯支路電流相位超前,從而影響輸出電壓相位。 并聯電容使得并聯支路電壓相位滯后,從而影響輸出電壓相位。 串聯電感使得串聯支路電流相位滯后,從而影響輸出電壓相位。 并聯電感使得并聯支路支路電壓超前,從而影響輸出電壓相位。 


更簡潔的記憶: 

電容使電流相位超前,電感使電壓相位超前。(均指元件上的電流或電壓) 

電容——電流超前,電感——電壓超前。


圖片加載中...

在線留言

◎歡迎您的留言,您也可以通過以下方式聯系我們:

◎客戶服務熱線:021-51095123

◎郵箱:xin021@126.com

展開
国产激情久久久久久熟女老人 | 上面一边亲下一边面膜使用方法| 69日本人XXXX16-18| 麻花传媒免费网站在线观看| 岳又紧又嫩又多水好爽| 久久亚洲精品无码AV| 亚洲熟妇真实自拍另类| 久久精品饰品有限公司网站| 亚洲熟妇色XXXXX成熟| 久久精品夜色噜噜亚洲A∨| 亚洲午夜无码片在线观看影院百度| 精品无码人妻被多人侵犯aⅴ| 日本丰满的人妻HD高清在线| 啊灬啊灬啊灬快灬高潮了老 | 日韩精品一区二区亚洲AV观看| 把腿张开老子CAO烂你动态图| 欧美最猛黑人AAAAAXXX片| 爱丫爱丫影院电影网| 日韩精品无码专区免费视频| 成人性色生活片免费看爆迷你| 三人一起玩弄娇妻高潮| 国产成人精品综合在线观看| 无码午夜福利视频一区| 国色天香果冻传媒国卡1区| 亚洲国产精品久久精品成人网站 | 24小时最新在线视频免费观看| 女人张开腿让男人桶爽免| MM1313亚洲精品无码| 日本嫩交12一16XXX视频| 成人无码免费一区二区三区 | 调教后把奶头拴在跑步机上虐| 国产精品国三级国产AV| 亚洲AV无码成H在线观看| 精品久久香蕉国产线看观看亚洲| 亚洲色成人一区二区三区| 久久无码人妻精品一区二区三区 | 日韩无码视频一区二区| 国产对白videos麻豆高潮| 性──交──性──乱| 精品久久久久久国产潘金莲| 伊人久久大香线蕉亚洲五月天| 妺妺窝人体色WWW精品777| 宝贝腿开大点我添添公口述视频| 色噜噜狠狠色综合成人网| 国产精品三级在线观看无码| 亚洲精品无码久久久久久小说 | 18禁裸男晨勃露J毛免费观看| 欧洲美女粗暴交视频| 公和熄小婷乱中文字幕| 亚洲AⅤ精品无码一区二区| 久久九九久精品国产88| 99国产精品无码专区| 丧尸 湿润 粗大 快感 变异| 国产精品亚洲产品一区二区三区| 亚洲国产精品久久久天堂麻豆宅男| 久久久久久国产精品免费免费| 97久久精品人人爽人人爽蜜臀 | 天堂中文在线最新版| 黑人精品XXX一区一二区| 影音先锋人妻啪啪AV资源网站| 青草青草久热精品视频国产4| 国产国语对白又大又粗又爽| 亚洲人77777在线观看| 欧美A片XⅩX黑人性受| 公车掀起老师裙子进入在线| 无线乱码一二三区免费看| 狂野欧美激情性XXXX| 亚洲AV日韩精品久久久久| 久久久久亚洲精品男人的天堂| AVTT天堂网AV无码| 无码国产69精品久久久孕妇| 久久精品成人免费国产片小草| ASSPICS亚洲美女裸体CH| 天堂А√在线地址资源| 精品一区二区无码免费| WWW.一区二区三区在线 || 无码中文国产不卡视频| 老熟妇BBWASS| 公交车被多男摁住灌浓精| 亚洲日韩乱码中文无码蜜桃臀 | 日产精品卡2卡三卡四卡公司 | 一区二区三区国产精华护肤品| 人妻人人做人碰人人添| 国内A级毛片免费观看| 6080YYY午夜理论片中无码| 天天做天天躁天天躁| 久久香综合精品久久伊人| 大胆人体艺术视频| 亚洲欧美成人AⅤ在线专区| 欧美性猛交XXXX黑人口味重| 国产偷V国产偷V亚洲高清| 18禁自慰网址进入| 婷婷蜜桃国产精品一区| 可以C女性角色的游戏手游| 高清FREESEXMOVIES性TV出水| 亚洲欧美日韩久久精品第一区| 人妻AV综合天堂一区| 黑人粗硬进入过程视频| 99国产精品白浆无码流出| 亚洲国产AV无码专区亚洲AVL| 人妻AV中文字幕无码专区| 久久久久99精品成人片| 免费乱码人妻系列无码专区 | 我的真實亂倫故事| 里番ACG★同人里番本子大全| 公翁的粗大放进我的秘密小说| 野花高清影视免费观看西瓜| 日韩精品无码AV成人观看| 精品推荐国产AV剧情| 成人精品视频一区二区三区不卡 | 人人模人人爽人人喊久久| 精品久久久久久天美传媒| 成 人 网 站国产免费观看| 亚洲亚洲人成综合网络| 少妇人妻中文字幕| 免费的最近直播比较火的黄台| 国产精品夜色一区二区三区| A在线视频播放观看免费观看| 亚洲成AⅤ人片久青草影院| 人妻少妇出轨中文字幕| 久久精品国产99国产精品导航 | 亚洲AV无码日韩AV无码导航 | 日产精品卡1卡2卡三卡区别| 久久精品亚洲男人的天堂| 亚洲欧洲自拍拍偷精品网314| 日韩欧美视频一区二区| 老司机久久99久久精品播放| 国产乱人伦AV在线麻豆A| CHINESE中年熟妇FREE| 亚洲精品无码寂寞少妇AV| 舌头伸进去添的我好爽高潮欧美| 妺妺窝人体色7777777| 韩国的无码AV看免费大片在线 | 人妻丰满熟妇AV无码区不卡| 精品久久久无码中文字幕一丶| 俄罗斯18XXOO在线| 2020无码天天喷水天天爽| 亚洲国产精品无码7777一线| 视频一区二区三区在线观看蜜桃| 妺妺窝人体色WWW人体色| 饥渴人妻欲求不满在线| 亚洲 欧美 国产 制服 动漫 | 美女高潮黄又色高清视频免费| 久久久久无码精品国产| 国精产品一二三四线| 天天躁日日躁狠狠躁AV| 国产中文欧美日韩在线| 成人网站在线进入爽爽爽| 中文乱码字幕高清一区二区| 亚洲VA久久久噜噜噜久久天堂| 上到少妇叫爽TUBE| 女人和拘做受A级毛片| 久久WWW免费人成_网站| 国产嫖妓一区二区三区无码| 丁香激情五月中文字幕亚洲| AV潮喷大喷水系列无码| 影音先锋每日AV色资源站| 亚洲AV综合色区| 无码18在线网站成人网站| 日本少妇三级HD激情在线观看| 蜜桃亚洲AV无码一区二区三区| 精品无码AV一区二区三区| 国产人与ZOXXXX另类| 国产96在线 | 国产| 被公侵犯的漂亮人妻中文字幕| 2018午夜福利| 又湿又紧又大又爽A视频| 亚洲精品无码AV天堂| 亚洲AV成人片无码网站网一区| 天码人妻一区二区三区| 日本怡春院一区二区三区| 欧美日韩人妻精品| 美女无遮挡免费视频网站| 九色综合狠狠综合久久| 国产又爽又黄又爽又刺激 | 国产麻花豆剧传媒精品MV| 丰满少妇偷人51视频在线观看| JAVAPARSERHD夫妻| 4虎CVT4WD| 在线观看片免费人成视频无码| 亚洲色偷偷偷综合网| 亚洲丰满少妇自摸| 亚洲AV成人无码一区在线观看| 无码人妻丰满热妇又大又粗| 上课我穿超短裙被同桌摸出水 | 国产AVXXXX无套内射| 成人亚洲一区无码久久| 班长哭着说不能再C了视频| 99热这里只有精品免费播放| …久久精品99久久香蕉国产| 中文亚洲AV片在线观看无码| 一区二区三区无码被窝影院| 亚洲伊人情人综合网站| 亚洲熟妇AV一区二区三区浪潮 | ZOOFILIA杂交JAPAN| CC小恩雅透明内抹油的使用方法| 7X7X7X任意槽2023进口| 91精品人妻一区二区三在线| 18禁止福利午夜体验试看| 97人妻精品一区二区三区|